skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mollerus, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The pace of antibiotic resistance necessitates advanced tools to detect and analyze antibiotic resistance genes (ARGs). We presentresLens, a family of genomic language models (gLM) leveraging latent genomic representations for ARG detection and analysis. Unlike alignment-based methods constrained by reference databases,resLensfine-tunes pre-trained gLMs on curated ARG datasets, achieving superior performance across several evaluation scenarios, including when ARGs exhibit dissimilar sequences and mechanisms to those in reference databases. 
    more » « less
    Free, publicly-accessible full text available July 11, 2026